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INTRODUCTION: 
MicrDarray analysis provides an efficient unbiased strategy to identify 

differentially expressed genes in breast cancer.The statistical analysis of large-scale gene 
expression studies, however, imposes several serious novel challenges. Most importantly, 
gene expression arrays have a well-defined internal data structure dictated by the genetic 
network of the living cell. Standard analytical tools often ignore this structure and, as we 
shown recently (1), this may lead to errors of several orders of magnitudes in the 
statistical analysis. The consequence of this is obvious: either the statistical analysis 
might be too "lenient" producing false leads wasting experimental effort, or the analysis 
might be too strict eliminating truly important leads in cancer research. The solution is 
creating statistical analytical tools that will take into consideration the internal data 
structure of cancer associated gene expression measurements. This will in tum determine 
the probability that a given feature, such as a cluster or separator, will appear by chance 
in a gene expression array. 

BODY: 
First, we developed tools to characterize the internal data structure of cancer 

associated gene epxression matrices. In order to ensure fast implementation, in our first 
approach we used discretized data. (We are currently modifying our tools for continuous 
data. See below) We developed a program to calculate the pair-wise mutual information 
distribution of genes or samples and also to determine significant relevance networks. 
(1,3) We showed, that the mutual information distribution of the real data and 
randomized data sets are very different indeed (1). We introduced the concept of a 
"separator" which is a set of genes coupled by an appropriate set of rules that can 
disinguish between two phenotypes (e.g. cancer and normal). We developed a program 
that could search for separators exhaustively in a gene expression matrix up to 
complexity level of 5 (i.e. the combination of 5 genes). We determined both theoretically 
and by Monte-Carlo simulations the expected number of separators in a completely 
random data set (1). Then, we created a simulation-based tool that generates random data 
sets while retaining the overall pair-wise mutual information distribution that is detected 
in the actual breast cancer associated measurements (the concept is described in details in 
publication 1). After creating and analyzing a large number of such data sets we could 
estimate the probability of chance appearance of separators in both the completely 
random data sets and the one that retained the overall data structure of the original gene 
epxression matrix. We found, that ignoring this data structure, the probability of chance 
appearance of separators can be underestimated by orders of magnitudes, leading to a 
large number of false leads for the expreimenters. 

Discretizing gene expression data (i.e. working with up- or down-regulation, or no 
change instead of the actual level of gene expression ) is a fequently used method in 
microarray analysis. After establishing the significance of these calls, one can ignore the 
effect of noise of measurements in later steps of numerical analysis. 
However, the risks of discretization for statistical analysis are also well known, therefore 
we decided to further develop our statistical methods for the analysis of continuous data. 
We set out on two theoretically different paths, with the second approach providing 
additional benefits considering the unique characteristics of microararay based data. 

4 ■ 



First we created an evolutionary-algorithm based tool for the molecular 
classification of cancer. So far, we have implemented a version of the algorithm that is 
limited to finding classifiers consisting of only four (or fewer) genes. For this initial 
version we have also set some limitations on the mathematical operators that relate the 
four genes. Our method hasbeen applied to a breast cancer derived data set recently 
published by van't Veer et al (5). This contains the relative expression level of 25,000 
genes in 98 breast cancers. This data set was used by the authors to discriminate between 
different patients who developed distant metastases within 5 years and patients who 
remained disease free after a period of 5 years. They determined a set of seventy genes 
that individually showed best correlation with metastasis-free survival and concluded that 
based on the combination of these genes one can provide a classification with 83% 
accuracy. Our evolutionary based algorithm produced a four-gene classifier that could 
predict metastasis free survival with 91% accuracy (6) . This very promising result 
achieved with relatively simple computational tools is a strong incentive for further 
development of our method. We are currently developing an algorithm that will rank the 
possible classifiers by their noise tolerance. We are also implementing a test that will 
determine whether a given classifier could have arisen in a given gene expression matrix 
purely by chance. We are searching for the simplest, noise tolerant classifiers that are 
statistically significant. The impact of our approach to extract the simplest classifiers is 
obvious for molecular diagnostics. Fewer genes can be more accurately and more 
sensitively measured by e.g. QRTPCR than a set of genes on the order of one hundred 
that require parallelized methods such as microarray technology. 

Our second approach deals with two unique issues in the statistical analysis of 
microarray measurements: first, retaining the internal data structure as described above; 
second, cancer associated gene expression matrices often produce a single set of 
measuremens per tumor sample. Results in these experiments, such as disease classifiers 
or novel tumor sub-classes, manifest as a sub-array of the expression levels of a selected 
subset of genes in a selected subset of samples Having only single measurements requires 
the introduction of information theoretical approaches leading to the question: What is 
the likelihood, that such a sub-array, which we call a "feature", carries non-zero 
information? We gave an ab initio derivation of probabilities for features in microarray 
expression measurements and precise algorithms to quantify the information content of 
such features. This is accomplished by defining precise ''null hypotheses", formulated in 
the context of appropriate disproportion measures, which are quantitative measures of the 
association between rows and columns in an array, and within the context of appropriate 
ensembles associated with the experimental microarray expression data set. A given null 
hypothesis for a selected feature asserts that the value of disproportion measured 
experimentally for that feature could have occurred by chance in the ensemble 
considered. Therefore, when the probability of validity of the null hypothesis is small, 
the feature is unlikely to have appeared by chance, and therefore carries non-trivial 
information. Our method is robust, unbiased and makes no assumptions about underlying 
uncertainties in the expression data set. This method is a novel tool for validating 
diagnostic marker genes in gene expression matrices and is also helpful in determining 
the number of samples required to validate results extracted from microarray 
measurements. These tools will be made available to the research community soon. 



KEY RESEARCH ACCOMPLISHMENTS: 
1) We have shown that cancer associated gene expression matrices have a well-defined 
internal data structure, as reflected in e.g. the mutual information distribution of genes. 
We have demonstrated, that if this data structure is ignored then the probability of the 
chance appearance of separators in these data sets can be underestimated by several 
orders of magnitudes. 
2) In order to avoid this error we have created a simulation based tool that can generate 
random gene expression matrices that retain the internal data structure as reflected in the 
overall pair-wise mutual information distribution of genes. 
3) We further developed our tool to handle continuous data as well. We have introduced 
an information theoretic approach for the statistical analysis of cancer associated gene 
expression matrices. This deals with the unique data structure of these measurements and 
with the lack of replicates at the same time 

REPORTABLE OUTCOMES: 
- Algorithm to extract gene expression separators from discretized data sets (1). 
- Estimating the internal data structure of cancer associated gene expression 
measurements by mutual information distribution. (1) 
- Estimating the probability of chance separators in randomized and real gene expression 
matrices (1,2). 
- Introduction of information theoretical approaches for the statistical analysis of gene 
expression matrices (4). 

CONCLUSIONS: 
Ignoring the internal data structure of cancer associated gene expression matrices by 
using completely randomized data sets as a statistical control may severely mis-estimate 
the statistical significance of microarray based results. We are introducing two methods 
to overcome this problem: the first is generative models that produce random data sets 
while retaining the overall level of gene co-regulation as reflected in the distribution of 
pair-wise co-regulation measures. The second method is an information theoretic 
approach based on the theory of RxC contingency tables. This latter method also deals 
with the lack of replicates often encountered in cancer genomics. 
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Most human tumors are characterized by: (!) an aberrant set of chromosomes, a state termed 
aneuploidy; (2) an aberrant gene expression pattern; and (3) an aberrant phenotype of uncontrolled 
growth. One of the goals of cancer research is to establish causative relationships between these three 
important characteristics. In this paper we were searching for evidence that aneuploidy is a major 
cause of differential gene expression. We describe how mutual information analysis of cancer- 
associated gene expression patterns could be exploited to answer this question. In addition to providing 
general guidelines, we have applied the proposed analysis to a recently published breast cancer- 
associated gene expression matrix. The results derived from this particular data set provided 
preliminary evidence that mutual information analysis may become a useful tool to investigate the link 
between differential gene expression and aneuploidy. 

Most human tumors display a set of well-defined aberrations at different 
levels of cellular biology and biochemistry. These include numeric chromosomal 
imbalance, termed aneuploidy', mutations in various genes, and an abnormal gene 
expression pattern^. One of the main aims of cancer biology is to fmd the causative 
relationship between these aberrations. Beyond scientific curiosity, understanding the 
link between these changes detected in tumors may have a profound impact on 
cancer therapy as well. If the abnormal gene expression patterns foimd in tumors 
were in fact a direct result of aneuploidy, then reversal of aneuploidy might be able 
to return tumor cells to a more normal gene expression pattem and phenotype, and 
therapies based on this approach should be investigated. 

With the availability of data from the Human Genome Project specifying 
the various genes on each chromosome, it should now be rather straightforward to 
establish whether or not an extra chromosome or the loss of a chromosome is 
reflected in higher or lower expression levels of the genes present on that 
chromosome. For example, there are cases of pediatric acute lymphoblastic 
leukemia in which the sole karyotypic change is chromosome 5 trisomy^ In these 
cases the relative expression levels of the genes localized on this chromosome 
should be increased and this could be readily measured. However, the karyotype of 
most tumors is significantly more complex and the ploidy regulation of gene 
expression is likely superimposed by other regulatory mechanisms. Therefore, 
proving tiiat differential gene expression pattems detected in cancer are generally 
induced by aneuploidy will probably involve a more complicated analysis of large- 
scale gene expression and karyotype databases. 



The aim of the current paper is to describe a mutual information-based 
analytical framework for such an analysis, and to perform the first such analysis on 
a publicly available data set of breast cancer-associated gene-expression changes. 

The causes of differential gene expression in cancer: Differential 
gene expression patterns in cancer result from the superimposition of the following 
three mechanisms: 

1) Extra or missing chromosomes or chromosome regions (segmental 
aneuploidy). It is obvious that the often-detected complete loss of a given 
chromosomal region from a cell is reflected in the complete down-regulation of the 
genes present in that region. It is also well-known that increased copy number of a 
gene, called DNA ampUfication or the multiplication of a chromosomal region 
directly causes up-regulation of gene expression (see for example ') 

2) Many oncogenes act as transcription factors themselves or have a well- 
characterized direct effect on other downstream transcription factors. When these 
oncogenes (e.g., myc, src and ras) are overexpressed or mutated, they directly or 
indirectly change the expression level of several other genes . 

3) The genetic network of a cell with a stable phenotype is self-consistent. 
In other words, the expression level of each gene is consistent with the expression 
level of its regulatory inputs. The very existence of cancer-associated differential 
gene expression proves that the genetic network of a given cell has several 
alternative stable states. These states are often called attractors in genetic network 
theory'', and during malignant transformation the cell is induced to undergo attractor 
transition. It was also hypothesized, although never proved experimentally, that the 
cells can reach these alternative attractors after major perturbations of the genetic 
network, without the continued presence of oncogenes or aneuploidy. This idea is 
partially supported by the so called hit and run mechanism, when after malignant 
transformation the causative oncogene (e.g., ras) is lost but the cell still remains in 
its neoplastic state*'^. (It should also be noted that there are examples of reversible 
malignant transformation, when the cells revert to their non-malignant state after the 
overexpression of the causative oncogenes has been turned off*"'  .) 

General analytical framework in order to establish aneuploidy as 
a major mechanism inducing cancer-associated gene expression 
patterns: If aneuploidy is its main driving mechanism, then differential gene 
expression in cancer will be induced as follows: First a group of genes will be up- 
or down-regulated due to chromosomal gain or loss. Then this aneuploidy induced 
gene expression pattern will be adjusted by the regulatory ftuictions of the genetic 
network present in the cell, keeping the network consistent with the gene regulatory 
rules. 

This hypothesis assumes that the genes present on the same chromosome 
or chromosome region will be often mis-regulated in the same tumor samples, 
showing a certain degree of co-regulation in gene expression measurements 
performed on a sufficiently large number of cancer samples. The level of co- 
regulation can be readily quantitated by simple means such as calculating the 



Pearson correlation coefficient in continuous gene expression measurements . In 
this paper, however, we propose to use mutual information instead of correlation 
coefficient (mutual information can be considered as a discretized form of the 
absolute value of correlation coefficients") for two reasons. First the precision of 
massively parallel gene expression measurements is limited. Second, the degree of 
up- or down-regulation which can be expected to result from aneuploidy is not 
known. Thus, currently it is more informative to trinarize the data, classifying each 
gene as either unchanged or up- or down-regulated, rather than attempt to weight it 
with the ratios of mis-regulation. Trinerization can be readily performed after self- 
normalization of large-scale gene expression matrices as described by Chen et al'''. 

Proposed  analytical framework: 
1. Take a cancer-associated gene expression matrix that was derived from a series 

of tumor samples of the same type (e.g. a set of primary mammary carcinomas) 
as population- and time-averaged gene expression data. Convert these data into a 
ternary matrix at an appropriate confidence level. 

2. Calculate pair-wise mutual information for all gene pafrs and create relevance 
networks of co-regulated genes with a mutual information level that is above 
the highest level detected in the gene ej^ression matrix after randomization (i.e. 
above a threshold mutual information that can be still due to chance.) 

3. Determine the chromosomal localization of the genes of the relevance network 
and compare it to the chromosomal distribution due to chance. This is 
determined by simulations assuming that co-regulated genes are randomly 
assigned to chromosomes. 

4. If there are any relevance networks that show an unexpected clustering of genes 
located on the same chromosome, compare them to aberrations reported for that 
chromosome. 

We will provide detailed description of the steps of this algorithm below, using a 
concrete breast cancer-associated gene expression matrix. 

A complete analysis will require several complementary data sets: 

1) A large body of gene expression measurements on a given type of 
cancer. The size of this data matrix is defined by the possible number of 
chromosome combinations or karyotypes associated with that type of cancer. 

2) A catalog of the possible karyotypes of a given cancer. It is well 
established, that certain gains or losses of chromosomal regions or of whole 
chromosomes are frequently observed in a certain type of cancer, whereas others 
never occur'^. The potentid number of major karyotypes is an important reference 
point in this analysis: if there is a high number of potential configurations of 
aneuploidy then the number of required gene expression measurements will be 
proportionally higher. 

3) The complete catalog of chromosomal localization of genes involved in 
the analysis, which will be soon available with the human genome project nearing 
completion. 



A large number of studies on the karyotypes of cancer indicated, that certain 
chromosomal aberrations are often associated with a certain type of tumor, whereas 
others are never observed. (See for example'^). This is also true for mammary 
tumors'^"'*. In this paper we were looking for relative enrichment of certain 
chromosomes in high mutual information relevance networks derived from a breast 
cancer associated gene expression matrix. 

Mutual information analysis of a breast cancer-associated gene 
expression matrix: We have analyzed the breast cancer-associated gene 
expression matrix recently published by Perou et al?. This publicly available data 
set contains cDNA microarray based relative expression levels of 5,584 genes for a 
number of both normal and neoplastic breast epithehal samples. For our analysis we 
have used only gene expression measurements derived from either breast cancer cell 
lines or primary breast tumors, 16 samples altogether. We have converted the 
continuous gene expression data into a ternary matrix, using a 2-fold up- or down- 
regulation as a threshold value. The ternary representation is justified by the current, 
relatively limited precision of massively parallel gene expression measurements and 
the fact that we have no estimates about the expected level of up- or down-regulation 
of gene expression induced by aneuploidy. The exact karyotype of these tumors have 
not been reported, but it is well known that most sporadic breast tumors have a 
chromosome set which is far from normal diploid' "'*. The breast cancer cell lines 
included in the analysis are also known to have a highly aneuploidic karyotype'^. 

In a recent technical paper^° we have pointed out that the overall 
quantitative features of cancer-associated gene expression matrices show several 
consistent characteristics. Namely, the number of mis-regulated genes and the ratio 
of down-regulated versus up-regulated genes are not arbittary but remain within a 
well-defined range for a given type of tumor. This data set had a high level of gene 
expression diversity. On average, 35% of all quantitated genes were mis-regulated in 
each sample. The high level of gene expression diversity was reflected in the high 
level of mutual information content of the data matrix even after randomization. 
It is also interesting to note, that the breast cancer samples examined here showed 
significantly more down-regulation than up-regulation of genes. In fact 13 out of 16 
samples had more down- than up-regulated genes relative to normal, and in 10 out 
16 samples the down-regulated genes outaumbered the up-regulated ones by 3 to 1. 

Mutual information analysis: We have calculated mutual information for 
all possible gene pairs as described in Butte et al}^ and Liang et al?^ with 
appropriate modifications. For simplicity we kept the range of mutual information 
between 0 and 1 by using base 3 logarithm for the ternary data set. Therefore the 
entropy of the mis-regulation for a single gene was calculated as follows: 

(1) H(A) = -Sp(Xi)log3(p(Xi)) 
i=l 



where pCxj) is the frequency based probabihty that gene A will take the value of X; 
(i=l,..3) out of the three possible states of 0 (no change), 1 (up-regulation) or -1 
(down-regulation). The mutual information for gene pairs A and B is defmed as 

(2)        MI(A,B) = H(A) + H(B) - H(A,B) 

Randomization of the data matrix: We needed to establish a threshold 
mutual information level (recently termed and abbreviated as TMI by Butte et al.  ) 
above which we considered two genes being co-regulated. Random distribution of 
I's, O's and -I's in a matrix will lead to a certain level of background MI 
distribution. This is routinely assessed by randomizing the gene expression matrix 
and then recalculating the pair-wise MI for all gene pairs. We have performed 
permutative randomization on the gene expression matrix as described in Wahde and 
Szallasi^^. This will randomize I's, O's and -I's within each row and will retain the 
average number of mis-regulated genes in the data matrix. The high number of mis- 
regulated genes of this data matrix predicted a high level of background MI level. 
Indeed, as demonstrated on Figure 1, after randomization there were several gene- 
pairs with a pair-wise MI level of up to 0.75. Therefore we have set TMI at this 
level. 

Mutual information analysis, matrix randomization and graphic 
representation was implemented in Borland Delphi 3. The computation time for 
calculating the pair-wise mutual information for the complete 5584x16 matrix is 
about 3 min. 

Calculating the  chance chromosomal  distribution  of relevance 
networks: In an ideal case to prove the involvement of aneuploidy in differential 
gene expression patterns, one would expect fully connected relevance networks with 
high mutual information content where all or most genes are localized on the same 
chromosome. However, these ideal clusters will be "diluted" by the superimposed 
effect of gene co-regulation and by the fact that certain chromosomal aberrations 
occur together with higher frequency. On the other hand, if differential gene 
expression is driven by gene co-regulation with no ploidy effect at all, then one 
would expect that the genes present in high mutual information clusters, if they 
exist at all, would be nearly randomly distributed among all chromosomes. This 
latter assumption has formed the null hypothesis of our statistical analysis. We 
determined the likely distribution of chromosomal assignments within each 
relevance network assuming that those genes are randomly localized on 
chromosomes. Since the exact number of genes on each chromosome has not been 
determined yet (with the exception of Chr. 21 and 22), we have assumed that the 
nxmiber of genes/chromosome is proportional to the size of the chromosomes 
measured in megabases. (These data can down-loaded from the web site of National 
Center for Biotechnology Information at www.ncbi.nlm.nih.gov/.) Human 
chromosomes vary in size between 263 Mb (Chr. 1) and 47.7 Mb (Chr. 22). 
Therefore, we assumed that a gene in a relevance network will be assigned with 
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Figure 1 The distribution of mutual information amongst all possible gene-pairs for the 
actual data set (open colxunns) and for the average of ten randomized data sets (filled 
columns). The randomization of the gene expression matrix and the calculation of pair- 
wise mutual information for all possible gene pairs were performed as described in the 
text. , 

about 5-fold higher probabiUty to e.g. Chr. 1 than to Chr. 22. In other words, we 
assumed that in the absence of ploidy regualation the probability that a given gene 
is present in a given relevance network will be proportional to the size of the 
chromosome on which the gene is localized. This assumption will become more 
accurate as more information becomes available from the human genome project. 

We have implemented the following simulation in Matlab: we set the 
simulated cluster size, i.e. number of genes, to a given detected relevance network of 
high mutual information (see table 1). Then we have randomly assigned the genes of 
that cluster to chromosomes in such a way that the probabili^ of assignment was 
proportional to the size of the chromosome. Finally, we have calculated how 
frequently we have seen a chromosomal distribution similar to the one observed in 
the relevance networks derived from the original data set. For each relevance network 
we ran 1000 simulations and determined whether at 99% confidence level the 
detected chromosomal distribution is due to chance. 

Summary of fmdings: We have identified 65 relevance networks at a TMI 
level of 0.75. The majority of these were small clusters, namely 35 gene pairs and 
16 gene triplets. None of the gene triplets were localized on the same chromosome. 
Preliminary analysis suggested, that it is likely (>10% chance) that two genes in a 



relevance network of three genes will be localized on the same chromosome. 
Therefore, further examination of these small clusters was not informative. We have 
identified 14 relevance networks with more than 3 genes. The chromosomal 
localization of each gene was determined by a sequence-based BLAST search against 
the human genome data-base maintained by NCBI. (Available at 
http://www.ncbi.nlm.nih.gov/genome/seq). This has ensured that the chromosomal 
localization of the actual gene probes were determined even if a given microarray 
probe carried the wrong gene identification. The chromosomal distribution of the 
genes of these networks is hsted in Table 1. All relevance networks were fijlly 
connected at a MI>0.75 level. 13 out of the 14 relevance networks showed 
chromosomal distributions that could be caused by chance (at 99% confidence level) 
assuming the random chromosome assignment described above. 

Relevance network #3, however, displayed significant "enrichment" of 
genes originating on three chromosomes. This relevance cluster of 13 genes 
contained four genes fi-om chromosome 17, three genes from Chr. 1, and two genes 
from Chr. 11, and the remaining four genes were from different chromosomes. This 
disfribution of chromosomal assignment is unlikely due to chance at a 99% 
confidence level. It is well documented that chromosomes 1,11 and 17 belong to 
the group of chromosomes that show numerical aberration with the highest 
frequency in breast cancer^^"'^. These chromosomes often show numerical changes 
together      . It is also known that loss of heterozygosity involving these 
chromomes is frequently detected in these tumors, and these chromosomes are more 
often lost than gained in breast cancer''"'*. These data showed excellent correlation 
with the fact that the mis-regulation of genes involved in this relevance network 
represented mainly down-regulation. (The genes present in this relevance network 
were down-regulated in 8 tumors, up-regulated in one tumor and unchanged in 7 
samples.) hi this case, the relevance network gave a very good indication of the 
abnormal behavior of chromosomes associated with it. 

Discussion: In this paper we have introduced mutual information analysis as 
a tool to establish a causative link between aneuploidy and differential gene 
expression in cancer. The limited sample number of the available gene expression 
data in breast cancer and the lack of a comprehensive database of karyotypes has 
obviously limited our analytical efforts at the moment. Nevertheless, in one case 
our analysis turned up a large relevance network of high mutual information in 
which the genes' chromosomal assignment was non-random. Furthermore, the three 
chromosomes highly represented in this relevance network (Chr. 1,11 and 17) have 
been reported to show coordinated numerical aberrations in breast cancer "  . These 
chromosomes are often lost which corresponds well with the frequent coordinated 
down-regulation of these genes in the breast cancer associated gene expression 
matrix examined. 

The fact that only one out of fourteen relevance networks showed signs of 
involvement of aneuploidy suggests that chromosomal aberrations may play a 
limited role in the differential gene expression detected in breast tumors. However, 
the relevance network with non-random chromosomal assignment provide a 



preliminary proof of principal and suggest a wider application of mutual information 
for this type of analysis. 

Abbreviations: Chr.; Chromosome, TMI: threshold mutual 
information, M: mutual information 
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of Defense. 

Relevance 
Network 

Chromosomes represented by 
1 gene            2 genes            3 genes         4 genes 

#1  17   genes 
(2   unknown) 

1,2,3,4,5,8, 
12,13,15,16 

17 10 

#2 IS   genes 
(1   unknown) 

1,2,7,8,14, 
X 

2,9,18,19 

#3 13   genes 2,4,5.10 11 1 17 
#4 11   genes 4,6,13,14, 

19,20,X 
2,17 

#5 10   genes 2,3,4,6,10, 
12 

5,15 

#6 10   genes 
( 2  unknown) 

2,11 3,4,10 

#7 9 genes 
(1   unknown) 

1,2,3,6,8, 
10,11,19 

#8 8   genes 3,9,10,15, 
17,19 

1 

#9 7   genes 
(2   unknown) 

1,3,5,16,19 

#10  6   genes 
(1   unknown) 

15 6,12 

#11   S   genes 
(1   unknown) 

1,2,9,12 " 

#12   5   genes 15 3,12 
#13   5   genes 1,4,7,21,22 
#14  4 genes 1,2,5,7 

Table 1. List of chromosomal assignments of genes present in relevance networks 
with high mutual information and with more than 3 genes. See further details in the 
text. 



H12627/ 10q26.3 

H19554/   4q26- 

H46541/ 17q2 

N28972/   17 

AA082083/ 

W56838/   11 

128/ 2 

AAl 13970/  1 

AA070150/  5 

T72095/   1 

H30619/   17pl2-pll.2 

AA033899/   Ilql2-ql3 
AA0085300/   lq23.2-24.3 

Figure 2. Relevance network #3. The gene accession number and the corresponding 
chromosomal localization (in bold letters) is listed for each gene. 
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Abstract 

One of the main aims of analyzing cancer associated gene 
expression matrices is to identify a subset of genes that is 
consistently mis-regulated in a given type of tumor samples. 
Such a subset of genes forms, together with an appropriate 
function, a separator that can distinguish between normal and 
tumor samples. Separators can appear accidentally due to the 
high level of gene expression diversity detected in cancer. 
Various statistical methods can be used to estiinate whether 
the appearance of a given separator is due to chance. How- 
ever, the accuracy of all these tests will depend on the null 
hypothesis provided by the data structure. In this paper we 
are introducing generative models in order to simulate ran- 
dom, discrete gene expression matrices that retain the key 
features of massively parallel measiurements in cancer. These 
include the number of changeable genes and the level of gene 
co-regulation as reflected in their pair-wise mutual informa- 
tion content. We show that the probability of the chance ap- 
pearance of separators can be xmderestimated by many orders 
of magnitude if random and independent selection of mis- 
regulated genes is assumed instead of using the generative 
model outlined in this paper 

Introduction 
The recent publication of several cancer associated large- 
scale gene expression matrices has clearly indicated that tu- 
mor biology has entered a new phase of analytical approach- 
es. These matrices contain quantitative information about a 
large number of directly measured parameters, usually gene 
expression levels, that are typically hsted as the rows of the 
matrix. The colunms in these experiments correspond to dif- 
ferent phenotypes such as different types of tumors or differ- 
ent treatments of either normal or neoplastic cells. Current 
computational biology is expected to define the different lev- 
els of analysis on these massively parallel data sets e.g. to 
what extent should knowledge based systems be involved. 

In this paper we are focusing on analytical approaches that 
will use only the information contained in the gene expres- 
sion matrices. There are two obvious ways of exploiting 
cancer associated gene expression matrices. Identification of 
separators or gene expression fimctions (Szallasi, 1998) de- 
termines a subset of genes the status of which, when coupled 
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by an appropriate rule, will define the phenotypic state of 
cells. The classification of phenotypic samples on the other 
hand is supposed to identify subsets of samples with above 
average molecular similarity. These subsets can be later used 
to search for common genetic markers. The aim of this pro- 
cedure, which was recently termed as tumor class discovery 
in cancer research (Golub et a/, 1999), is supposed to yield 
a group of tumor samples sharing a common set of genetic 
markers. 

Cancer associated gene expression pattems show a high 
level of diversity. The average number of mis-regulated 
genes is on the order of 10% of all genes expressed in the 
given cell type (Perou et al. 1999). This variability will in- 
evitably lead to the accidental appearance of separators and 
clusters in these data sets. The main aim of this paper is to 
introduce generative models in order to estimate the prob- 
ability of accidental features of cancer associated gene ex- 
pression data sets. 

In this paper we will be focusing on discretized data. Con- 
tinuous cDNA microarray measurements can be converted 
into ternary data as described by Chen et al. (1997). Their 
algorithm first calibrates the data internally to each microar- 
ray and statistically determines whether the data justifies the 
conclusion that a given gene is up- or down-regulated at a 
certain confidence level. 

Separators 
The purpose of separators is to identify pattems of gene 
expression indicative of neoplasticity. Thus, a separator 
S = S{gi ,g2,..., QK) is a discrete function of several in- 
puts which takes the value I if the corresponding sample is 
in a neoplastic state and 0 otherwise. Using ternary data sets, 
the expression level of each gene can take one of three val- 
ues, namely -I (down-regulated), 0 (unchanged), or 1 (up- 
regulated). We will consider here the case when all samples 
are in the neoplastic state (i.e. S=I), and the down- or up- 
regulation is measured relative to an appropriate normal con- 
trol. The analysis for the more general and complex case of 
both neoplastic (S=I) and normal tissue samples (S=0) will 
be treated elsewhere (Wahde and Szallasi, 2000). Let N de- 
note the number of genes in each sample, M_ and M+ the 
number of down- and up-regulated genes, respectively, and 
M their sum, i.e. M = M_ + M+. The number of samples 
is denoted E. According to the assumptions above, the da- 



ta contains examples of gene expression patterns for which 
5 = 1. Clearly, any set of genes (51,...JPK) for which there 
exists at least one sample such that gi = 92 = — = 9K = 0 
cannot describe a separator, since some change in the ex- 
pression levels is needed to arrive at the neoplastic state. 
Thus, the first step in identifying a separator of A" inputs, is 
to find all combinations of K genes such that, in each sam- 
ple, at least one of the K genes is down- or up-regulated. 
Any such combination of genes defines a separator. Howev- 
er, the high level of gene expression diversity in cancer sam- 
ples makes it probable that separators can occur by chance 
even in the extreme case when gene expression patterns are 
generated by the random and independent selection of the 
mis-regulated genes. 

Generative models 
The probability of chance appearance of separators can be 
estimated by analytical tools only in relatively simple cas- 
es. For example, the accidental appearance of a single gene 
separator in a gene expression matrix produced by random 
and independent selection can be estimated by combina- 
torics (Wahde et al, 2001). However, in more complex cas- 
es, analytical calculations become intractable but computer 
simulations can still be used to obtain estimates of probabili- 
ties. The aim of a generative model is to produce an artificial 
data matrix which shares the essential characteristics of the 
original data matrix. The artificial data obtained by means 
of the generative model can then be used to form null hy- 
potheses for the estimation of the probability of separators 
discovered in the real data set, thus making it possible to 
distinguish chance separators from actual separators.   • 

Generative models can be derived fi-om either theoretical 
considerations or empirical observations. In cancer research, 
theory-based generative models can use either genetic net- 
work modeling or aneuploidy driven gene mis-regulation as 
their starting point. Malignant transformation can be con- 
sidered as an attractor transition of a self-organizing gene 
network (Kauffinan 1993, Szallasi and Liang 1998) provid- 
ing numerical estimates about the overall quantitative fea- 
tures of attractor transition like the expected number of up- 
or down-regulated (with a common term, mis-regulated) 
genes. There is an increasing evidence of the ploidy regula- 
tion of gene expression levels as well (Galitski et al, 1999). 
Thus, the aneuploidic distribution of chromosomes can also 
be used to model the expected gene expression pattems in 
cancer (Rasnick and Duesberg, 1999). At the current stage 
of theory and available data sets, however, we can best rely 
on generative models based on empirical observations. This 
approach starts with extracting overall quantitative features 
of cancer associated gene expression matrices. These in- 
clude the number of genes that can be mis-regulated, the 
ratio of up- versus down-regulated genes and the level of 
co-regulation of mis-regulated gene groups. 

In this paper, two methods for generating artificial data 
will be introduced and described. The first method simply 
forms a randomized gene expression matrix while preserv- 
ing certain overall features of the real data matrix, such as 
the number of mis-regulated genes in each sample. Mutual 
information based generative models, which is the second 

method introduced here, preserve additional features of the 
real data, namely the co-regulation of genes. Note that we 
will use the terms generative model and generative algorithm 
interchangeably in this paper. 

Randomization based models 
As noted above, the gene expression diversity in cancer sam- 
ples is so high as to make it probable that chance separators 
can occur, even in the case when gene expression pattems 
are generated by the random and independent selection of 
the mis-regulated genes. Such chance separators must be 
removed in order for the true separators to be discovered. 

The simplest method of generating artificial data consists 
simply of inserting, for each sample, M+ I's and M_ -I's 
randomly in a null N x E matrix. In general, the values 
of M- and M+ will of course vary from sample to sample, 
so either an average value or the actual values of Mi and 
Mi (i = 1,...,E) fi-om the real data can be used. It turns 
out that the formula for the expected number of separators 
is very sensitive to the values of Mi. and M|., and therefore 
the use of average values is not to be recommended. The 
randomization method that uses the actual values of Mi and 
M^, will be referred to as simple randomization. 

Consider first the case of AT = 2 inputs. Assume that 
two genes, denoted 91 and 92, are being studied. In a given 
sample i, the approximate probability p* (2) of at least one 
of these two genes being clianged (up- or down-regulated) 

pi{2) = 1 - {pif, (1) 
where Po = {N - M*)/N denotes the probability of a giv- 
en gene being unchanged (M' = M^ + Ml, where M| 
and Mi denote, as before, the number of up- and down- 
regulated genes in sample i, respectively). Note that the 
approximation is vahd as long as 1 << M* << iV. In a 
typical neoplastic sample it is safe to make this assumption, 
since ~10% of the genes are changed (i.e. M' ~ O.IJV). 
The probability of at least one of the genes being changed in 
each of the E samples equals 

E E 

Ps(2) = i[pii2) = i[{i-(j>in     (2) 

Thus, the expected number of such separators is 

Ns{2) 
(") 

A(2). (3) 

Generalizing these formulae, it is easy to see that the expect- 
ed number of separators of K inputs is 

E 

Ns{K)=(^^y.iK)=(^^^Y[pl (K)       (4) 

where 
p^,{K) = 1 - (p^)^. (5) 

This analysis gives an estimate of the total number of sep- 
arators otK inputs expected in a randomized artificial data 
set. Using similar methods, the approximate probability of 
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Figure 1: The distribution of pair-wise mutual information 
content. Panel A: Actual data set from Perou et al (see text); 
B. Data randomized using simple randomization; C. Data 
obtained by running the generative algorithm. 

discovering any specific separator in artificial data can also 
be obtained. In the case of K inputs, the total number of 
combinations of the input variables equals 3*^. The estimate 
of the probability of a specific separator begins by the com- 
putation of the probability, for one sample i, of obtaining 
one of those combinations for which S = 1. This probabil- 
ity is denoted p^. The expected number of separators in the 
data set is then given by 

"-©--a)n^«- (6) 

As an example, consider a separator defined by the entries 
of Table 1. In any given sample i, the probability of having 
5 = 1 equals 

P'R = PU,-I +PO,-I +Pi,i = (P-)' +PoP- +P;P+- (7) 

9i 92 s 
-1 -1 1 
-1 0 0 
-1 1 0 
0 -1 1 
0 0 0 
0 1 0 
1 -1 0 
1 0 0 
1 1 1 

Table 1: A if = 2 separator. The final column shows the 
value of the fimction S (the separator) for the given input 
configuration. 

where pj = (iV - Ml - M|)/Ar, pL = Mi /N, andp^ = 
Mi/N. The approximate number of expected separators of 
this type is then 

Artificial data matrices obtained through simple randomiza- 
tion are, as we have seen, easy to handle analytically but not 
altogether reahstic. For example, a real data matrix has a dis- 
tribution of pair-wise mutual information which differs sig- 
nificantly from that of a matrix generated by simple random- 
ization (Fig. 1). In particular, the randomized data generally 
lacks the spikes seen in the real data at high mutual informa- 
tion values. We now proceed to describe a generative model 
which does preserve the mutual information structure. 

Mutual information based generative models 

In the previous section we have discussed gene expression 
matrices in which a given number of gene mis-regulation 
appears by random and independent selection. In these ma- 
trices chance separators appear with a certain frequency that 
can be calculated as described above. This frequency, how- 
ever, may significantly increase by restrictions on the selec- 
tion of mis-regulated genes. Biological systems display the 
following two restrictions. First, not every gene can be mis- 
regulated. The number of changeable genes can be calcu- 
lated as described elsewhere (Wahde et al, 2001) by con- 
ditional probabilities. Second, mis-regulated genes are not 
independently selected. Gene expression levels in cancer 
are determined by several factors, such as the regulatory in- 
put of other genes and the actual DNA-copy number of the 
given gene present in a cell (Galitski et al, 1999). This will 
obviously lead to a high level of interdependence between 
gene expression levels which is readily quantified by mutual 
information content. As we will be showing below, retain- 
ing the high level of mutual information content in a gene 
expression matrix will significantly influence the number of 
separators appearing by chance. Consequently, the aim of 
our generative model is to simulate gene expression pattems 
by randomly selecting the mis-regulated genes while retain- 
ing the actual size of the pool of changeable genes and also 



their level of co-regulation as detected in actual cancer sam- 
ples, and measured by the mutual information distribution 
ofthe gene pairs. 

Algorithm The generative algorithm begins by generating 
a random data matrix R, by rearranging the matrix elements 
of the real data set D. A simple algorithm for arriving at 
a data set of this type is defined as follows: Loop through 
all genes. For each gene, loop through each sample, select 
randomly another sample, and swap the corresponding ma- 
trix elements. Note that, with this procedure, the values of 
Mi and M^ will change, since they are measured column- 
wise. However, since the computation of mutual informa- 
tion (see below) is based on comparison of genes (rows in 
the expression matrix), rather than samples (columns) this is 
the correct way to randomize the matrix in this case. This 
randomization method will be referred to as permutative 
randomization. 

Once the permutative randomization has been performed 
a histogram of pairwise mutual information values is gener- 
ated. A similar histogram is also generated for the real data 
set, and the distance between the two histograms is comput- 
ed as 

iVbi, 

\{HG,HD)^ 
Nx bins ro=l 

\HG{m)-HD{m)\ 
m.ax{HD{m), 1) 

(9) 

where ATbins is the number of bkis in the histograms, for 
which the bin width thus equals l/Nhins- The algorithm 
then proceeds with the calculation as follows: A gene j is 
selected at random among the N genes, and its contribution 
to the histogram is computed by checking the pairwise mu- 
tual information between gene j and all other genes. The 
contribution of gene j to the histogram is subtracted, and 
the matrix elements in the corresponding row of the data 
matrix are rearranged, with probability pswap, by the same 
swapping procedure as was used in the permutative random- 
ization algorithm. 

Then, the new contribution of gene j to the histogram is 
computed and the histogram thus obtained is compared with 
the histogram present before the rearrangement of gene j. 
If the distance is smaller than before the rearrangement, the 
new histogram (and, of course, the corresponding matrix) 
is kept. If not, the old matrix, and the old histogram, are 
retained. Thus, only improvements are kept, and the algo- 
rithm can be considered to be a simple implementation of 
an evolution strategy (Back et al, 1991). This procedure - 
selection of a random gene, subtraction fi-om the histogram, 
partial rearrangement, formation ofthe new histogram, and 
finally selection of either the old or the new configuration- 
is repeated many times, until the distance between the his- 
togram for the artificial data and that of the actual data is 
smaller than a user-defined critical value Ac. Usually, Ac 
was taken to be of order 10% ofthe initial distance between 
D and R. 

A pseudo-code representation of the algorithm is given 
in Fig. 2. Normally, pswap is given a large value in the be- 
ginning of a run, when the difference between the two his- 
tograms is large. The value of pswap is then gradually low- 
ered as the two histograms approach each other. There are 

Perform permutative randomization and set G = R; 

Compute mutual information distribution for G 
and D by going through all N{N - l)/2 gene 
pairs. 

Set the number of bins to iVbins (and thus the bin 
width to l/ATbins) for the histograms (see below). 

Compute the histogram HD of pairwise mutual 
information content for the original data set D, 
using the mutual information data computed above. 

Compute the histogram HQ of pairwise mutual 
information content for G using the mutual 
information data computed above. 

Compute the difference A in mutual information 
content between G and D as follows: 

AfTJ      rr   \ _      1      V^JVbitt. \Ha(m)-HD(m)\ 
^>--"G'-"^^ - JVbin, ^m=l     max(tfi,(m),l)   ' 

Repeat 

Pick a random gene j and compute 
the contribution ho-j of gene j to 
the histogram G. 

Subtract ha-j fi^om Ha to form H'Q : 
H'sim) = Haim) - ha-jim), m = 1,... .iVbin^. 

For row j of G, loop through all columns k of 
the matrix: 

For each k, pick a random column / and, with 
probability pswap, swap the matrix elements in 
the two locations: Gj, k ^ Gj, I. 

Let G' denote the resulting matrix, compute 
the new contribution h'Q,.j of row j to the histo- 
gram, and form He: 
HG'(m) = H'Gim) + ho'-jim), m = 1,...,iVbi„s. 

Form the difference A(HG' , HD) according to the 
formula above. 

if A(FG',^D) < A(HG,HD) then 

AcceptG': SetG = G'; A = A{HG',HD) 

else 

Reject G' and thus retain G; 

Until A < Ac. 

Figure 2: The generative algorithm for obtaining artificial 
data with a given mutual information structure. 



Table 2: The reduced Perou et al. data set, containing 1082 
genes and 16 samples. 

Sample Mi M; M' 
1 19 664 683 
2 67 150 217 
3 72 197 269 
4 80 247 327 
5 97 393 490 
6 40 96 136 
7 100 202 302 
8 115 105 220 
9 72 220 292 
10 115 234 349 
11 85 428 513 
12 72 640 712 
13 64 451 515 
14 58 173 231 
15 90 99 189 
16 65 260 325 

various ways of improving the algorithm, for instance by 
introducing adaptive control of the time variation of pswap- 
However, even in its present simple state, the algorithm runs 
rather fast, and typical running times for a data set with 
« 1000 genes and « 15 samples are around 15-20 minutes 
on a computer equipped with a 550 MHz PIII processor. 

Results 

Generative model based analysis of breast cancer 
associated cDNA microarray measurements 

In order to assess the relevance of generative models for es- 
timating the frequency of chance separators, we have ana- 
lyzed the breast cancer associated gene expression matrix 
pubUshed by Perou et al. (1999). This pubhcly available da- 
ta scc contains cDNA microarray based relative expression 
levels of about 5,600 genes for a number of both normal 
and neoplastic breast epithelial samples. For our analysis we 
have used only gene expression measurements derived from 
either breast cancer cell lines or primary breast tumors, 16 
samples altogether. We have retained only those genes in 
our analysis that showed an at least 3.5-fold up- or down- 
regulation in at least two samples. Using these threshold val- 
ues we have transformed the original data set into a 1082x16 
ternary data matrix. A summary of this data set is given in 
Table 2. 

The chance appearance of consistently mis-regulated 
genes, i.e. K = 1 separators, constitutes a special case 
which will be treated elsewhere (Wahde et al, 2001). Here 
we are focusing onK = 2 separators. Applying Eq.4, it is 
found that, for this data set, the expected number of separa- 
tors assuming random and independent selection (i.e. using 
the simple randomization method) is 8.6. As a comparison, 
numerical simulations yield an estimate of 8.5 ± 7.7 separa- 
tors (average of results obtained with 1,000 randomized data 
matrices). 

However, the actual number of separators, obtained from 
the real data set, equals 16,997. Clearly, a comparison with 
the randomized data matrix would indicate that this is a 
very significant number indeed. Comparing, however, with 
the results obtained using the generative algorithm (~ 40 
independent simulations), the result is very different. In 
this case, the average number of expected separators equals 
25,417±947. 

The high number of expected separators indicate that the 
16 samples contained in this data set are not enough to vali- 
date the presence of a real K = 2 separator. This was obvi- 
ously not the purpose of our current analysis. At this initial 
level of analysis we needed an appropriate data set in order 
to estimate the impact of generative models. 

The distribution of mutual information provides a useful 
visual aid to assess the overall data structure of gene ex- 
pression matrices. Panel A of Fig. 1 shows the distribution 
of pair-wise mutual information content of the ternary data 
set derived from large-scale, cDNA microarray based gene 
expression measurements of breast cancer samples (Perou 
et al, 1999). Each vertical bar shows the fraction of the 
gene pairs whose pairwise mutual information falls within 
the corresponding interval, of width 0.01. The randomized 
version of the same data set is shown in panel B, and pan- 
el C shows a representative simulated data matrix created 
by the generative algorithm defined in Fig. 2. Genes that 
are co-regulated in cancer will display a high mutual infor- 
mation content. Randomization will destroy the effect of 
co-regulation on the data set and gene pairs with high mutu- 
al information content are xmlikely to be present. Therefore, 
the distribution of mutual information will not contain spikes 
at high mutual information values as demonsfrated by panel 
B versus panel A. The generative algorithm, however, recre- 
ates the basic data structure of the gene expression matrix. 
Therefore, its mutual information disfribution will be more 
similar to that of the original data (panel A). A histogram of 
the distribution of the number of separators obtained from 
the generative model is shown in Fig. 3. 

Further analysis 
An analysis similar to the one reported above was performed 
for two other data sets as well. 

Analysis of a gene expression matrix derived from alveo- 
lar rhabdomyosarcoma samples We have also analyzed 
the gene expression data published by Khan et al (1998). 
This data set consists of 13 samples altogether, seven of 
them alveolar rhabdomyosarcoma samples and the rest com- 
monly used human cancer cell lines. The data matrix con- 
tained ternary expression information for 1248 genes. 

The actual number of separators for this data set was 
found to be 16,124. Using Eq.4, an estimate of 0.017 « 1 
separators was obtained, again much lower than the actual 
value. Using instead the generative algorithm, an average of 
17,252±133 separators were obtained. ' 

Analysis of colon cancer associated gene expression mea- 
surements   DNA-oligomer chip based gene expression 



23000      24(. 000      28000 

Figure 3: Histogram of the expected number of separators 
obtained using generative models for the reduced Perou et 
at data set. 

measurements were pubhshed on 2,000 genes in 22 patient 
matched neoplastic and normal colon samples by Alon et al. 
(1999). 

According to Eq.4, increasing the sample number (in this 
case to 22) decreases the expected number of separators ap- 
pearing by chance. Indeed, applying this equation, the ex- 
pected number of separators assuming random and indepen- 
dent selection is found to be 2.3 x 10~^^ <« 1. On the 
other hand, the actual number of separators with K = 2 
was equal to 1 for this data set, suggesting that this sepa- 
rator might play a role in colon cancer. This assumption, 
however, must be reevaluated after applying the mutual in- 
formation based generative models. If the essential structure 
of the colon cancer associated gene expression matrix is re- 
tained then the expected number of separators is increased 
by twelve orders of magnitude to 3.7 ± 1.4. This result puts 
into question the significance of the separator found in the 
data. This doubt was reinforced by the fact that neither gene 
involved in the separator has any documented involvement 
with any forms of human cancer. 

Discussion 
Successful analysis of cancer associated gene expression 
matrices will require a profound understanding of the data 
structure. In this paper, we have pointed out that statistical 
analysis ignoring the data structure characteristic of biology 
can be rather misleading, producing errors of several orders 
of magnitude. Here, we have introduced generative models 
that will simulate a large number of random gene expres- 
sion matrices while retaining the empirically detected level 
of gene co-regulation and the number of changeable genes. 

We note that two of the data sets used here contained 
rather few samples, and thus a large number of separators 
was found for both data sets. With more samples, the vast 
majority of the false separators would disappear, leaving us 
(at best) with a few separators, as was found for the last data 
set (Alon et al, 1999). It is interesting to note that, despite 
the large variation (between the data sets) in the number of 
separators, artificial data matrices based on simple random- 
ization underestimate the number of separators by several 
orders of magnitude, whereas artificial matrices obtained 
from the generative algorithm tend to overestimate the num- 

ber of separators, but by a much smaller amount. Howev- 
er, this result could be a chance occurrence, and it certainly 
needs to be investigated fijrther, using a larger (~ 10^) num- 
ber of artificial data matrices than the 10-40 or so that were 
used here. Such a vahdation will be the next step of our 
analysis. 

If the analysis would indeed confirm that the number of 
separators expected on the basis of the results form the gen- 
erative algorithm is larger than the number of separators in 
the actual data, this would indicate that the data sets studied 
do contam interesting information worthy of fiirther study. 

Determining the exact impact of generative models will 
require a thorough analysis. For example, clustering algo- 
rithms are routinely used to identify significant pattems in 
cancer associated gene expression matrices. The reliability 
of these results is routinely evaluated by running the same 
algorithm on a randomized gene expression matrix (Alon et 
al, 1999). The validity of this approach is highly question- 
able in light of our initial results. Generative models can 
easily be extended to continuous data by e.g. replacing mu- 
tual information analysis with the absolute value of the Pear- 
son correlation coefficient. Then these "continuous genera- 
tive models" could serve as reference points to estimate the 
chance appearance of clusters. 

Generative model based analysis of discrete gene expres- 
sion matrices, however, has one major advantage over con- 
tinuous models. It can easily incorporate the often used 
qualitative parameters such as the histological phenotype of 
a tumor. This would suggest that discrete and continuous 
generative models ought to be developed in parallel in order 
to accommodate the different types of data sets produced by 
cancer research. 

Another important improvement, for which work is un- 
der way, is to optimize the simulation program in order to 
accommodate larger gene expression matrices that will re- 
quire many simulations in order to provide certainty that a 
given separator did not appear by chance at a given confi- 
dence level. 

Furthermore, it would be of interest to obtain theoretical 
and simulation based estimates of the minimum size of gene 
expression matrices that will have a low frequency of acci- 
dental separators. This will, in turn, set the guidehnes for 
selecting the correct sample size that will allow powerful 
statistical analysis. 

Conclusion 

We have shown that an uncritical application of a null hy- 
pothesis based on artificial data obtained through simple ran- 
domization will underestimate, by several orders of magni- 
tude, the number of separators found in gene expression ma- 
trices. 

In order to obtain a more usefiil null hypothesis, we have 
introduced a generative algorithm which produces artificial 
data matrices that retain the pairwise mutual information 
structure of the original data. We have shown that, in the 
light of the results obtained using the generative algorithm, 
the separators foimd in the data sets used here may be chance 
occurrences, rather than actual indicators of neoplasticity. 
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ABSTRACT 
Motivation: The simplest level of statistical analysis of 
cancer associated gene expression matrices is aimed at 
finding consistently up- or down-regulated genes within a 
given set of tumor samples. Considering the high level of 
gene expression diversity detected in cancer, one needs to 
assess the probability that the consistent mis-regulation of 
a given gene is due to chance. Furthermore, it is important 
to determine the required sample number that will ensure 
the meaningful statistical analysis of massively parallel 
gene expression measurements. 
Results: The probability of consistent mis-regulation Is 
calculated in this paper for binarized gene expression 
data, using combinatorial considerations. For practical 
purposes, we also provide a set of accurate approxi- 
mate formulas for determining the same probability in 
a computationally less intensive way. When the pool of 
mls-regulatable genes is restricted, the probability of 
consistent mis-regulation can be overestimated. We show, 
however, that this effect has little practical consequences 
for cancer associated gene expression measurements 
published in the literature. Finally, in order to aid ex- 
perimental design, we have provided estimates on the 
required sample number that will ensure that the detected 
consistent mis-regulation is not due to chance. Our results 
suggest that less than 20 sufficiently diverse tumor sam- 
ples may be enough to identify consistently mis-regulated 
genes in a statistically significant manner. 
Availability: An implementation using Mathematica*"^ of 
the main equation of the paper, (4), is available at www. 
me.chalmers.se/~mwahde/bioinfo.html. 
Contact: mwahde@me.chalmers.se, zszallasl@chlp.org 

*To whom correspondence should be addressed. 

1    INTRODUCTION 
Due to recent technological developments, cancer re- 
search is delivering an increasing number of large-scale 
gene expression matrices associated with a wide variety 
of neoplastic states. In cDNA microaiTay measurements 
changes in gene expression levels are detemiined relative 
to an appropriate reference sample such as RNA derived 
from non-neoplastic tissue or cell lines (see e.g. Pei-ou 
et a!., 1999) or pooled RNA from all tumor samples 
examined (see e.g. Bittner el al, 2000). Although these 
measurements produce continuous data, their interpre- 
tation, due to a host of experimental and theoretical 
issues, is far from obvious. Therefore, at the simplest 
level of analysis it is practical to convert the continuous 
data into up-, or down-regulation or no change in the 
expression levels, and then seai'ch for consistently up- or 
down-regulated genes in an appropriately selected subset 
of samples, e.g. a given type of tumor. (For simplicity, 
from now on we will use the term 'mis-regulation' instead 
of up- or down-regulation, whenever the expression of a 
gene significantly differs from the reference expression 
level in a given experiinent.) 

This analysis has required tlie solution of two non- 
trivial problems. First, determining up- or down-regulation 
(or no change) with a given confidence level required 
the development of appropriate statistical tools that have 
been described and reviewed elsewhere (Manduchi et al., 
2000; Claverie, 1999; Chen et al, 1997). This step can be 
viewed as a conversion of the continuous data matrix into 
a discrete matrix which can be either ternary, in which 
up-, down-regulation and no change are represented by 
the discrete values of 1, -1, and 0 respectively, or a 
binary mati'ix, in which only tlie fact of change or no 
change is recorded. The second step of the analysis is the 
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subject of this paper and determines the probability that 
any gene is consistently up- or down-regulated by chance 
in cancer associated gene expression matrices that ai'e 
usually characterized by a high level of gene expression 
diversity. 

From a biological standpoint the analysis presented 
in lids paper is based on the assumption that there are 
groups of highly related tumor samples that share the 
same genetic background in terms of gene expression 
patterns. Therefore, gene expression changes tliat are 
causative or the result of a given type of cancer, are 
supposed to show a pattern of consistent mis-regulation 
over a sufticient number of tumor samples and therefore 
be identifiable by "guilt by association' analysis. Finding 
these genes, however, is complicated by the fact that 
cancer is associated with a large number of changes 
in gene expression levels. The exact traction of mis- 
regulated genes depends on the gene-set contained on 
the microanay chip. However, measurements performed 
with a large set (more than 5000) of relatively randomly 
selected probes, such as the one used by Perou et al. 
suggest that the number of mis-regulated genes may 
amount to about 10-15% of all genes present. Many of 
these changes are probably not intimately involved with 
the development or maintenance of cancer but rather due 
to the major refin"angement of tlie genetic network in 
neopla.stic cells which is often associated with aneuploidy 
(Klus et al., 2001). The considerable level of gene 
expression diversity, however, raises the question whetliei' 
the detected consistent mis-regulation is simply due to 
chance. 

In this paper we will provide tlieoreiical and computa- 
tional guidelines in order to calculate the probability of 
this event given a certain type of gene expression data 
set. We will use binarized data in order to introduce some 
of the combinatorics problems at hand and at the same 
time we will provide a theoretical estimate about the num- 
ber of different cancer samples required to perform mean- 
ingful statistical analysis. We will briefly point out that 
the statistical analysis of ternary gene expression data can 
be derived from the binai-y analysis, and for all practi- 
cal purposes it is covered by the equations provided by 
binary considerations. A more comprehensive analysis of 
gene expression matrices will search Ibr a group of K mis- 
regulated genes, the status of which, when coupled by an 
appropriate rule, will allow the separation of neoplastic 
and normal samples. Such a group of genes and the ap- 
propriate function form a separator (Wahde and Szallasi, 
2001). The present paper covers the special case of ^ = 1 
separators, whereas higher order {K = 2) separators were 
recently treated in Wahde and Szallasi (2001). 

2   SYSTEMS AND METHODS 
2.1   Binary analysis of consistently mis-regulatfed 

genes by combinatorics 
Binary analysis does not distinguish between the states of 
up- and dov/n-regulation for a given gene, it only registers 
the state of mis-regulation. A typical measurement con- 
tains E tumor samples, where the number of mis-regulated 
genes is M; in the fth sample, and the total number of 
genes expressed across all samples examined is N. If the 
mis-regulated genes are randomly and independently se- 
lected then we can assess the significance of finding K 
consistently mis-regulated genes by solving the following 
combinatorics problem: let us pick M; elements randomly 
and independendy out of A^ elements in E consecutive ex- 
periments. How likely is it that at least K elements will 
be picked in all E experiments? This probability is deter- 
mined by the following equation (for a brief derivation see 
Appendix): 

K-l 

P{E,k>.K) = 1- Y^P(E,k), (1) 

where P(E,k) is the probability tliat exactly k genes 
are consistently inis-regulated in E experiments. This 
probability is determined by the following recursive 
foimula: 

P{E,k)= Yl '     'vx ' 
j=k XMB) 

(2) 
where ME is the number of mis-regulated genes in the last 
(£th) experiment, and also 

P{2,k) 
mi-"'' yMi-k) 

^/V^ (3) 

In cases where tlie M,- values are almost equal for 
/■ = 1,..., £, (2) can be simplified into 

PiE,k)=Y.— 
i=k 

Uj) 

(A4V) 

(4) 

where Wav is the average of the M,. Note, however, 
that if the M, values vary significantly from sample to 
sample, (2) should be used. 

An implementation of (4) in Mathematical" is available 
from the authors at the following web site: www.me. 
Chalmers. se/~mwahde/bioi n fo .html. 

The computational cost of the formulae above increases 
rapidly with E. In fact, exact calculations for E > 6 
ai'e impractical because of tlie long CPU-time required 
(e.g. already for E = 6, /f = 1, M = 500, and N = 5000 
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the confutation time is already about 1 h and 35 min 
on a computer equipped with a 500 MHz PHI processor). 
Therefore, for practical purposes, we are introducing here 
an approxinktive formula that provides results similar to 
those given by (1), in the case of iV » May. 

P(E,k^K) 
(N\( N-K 

(5) 

The details of the derivation of this equation will not be 
given here. 

Probabilistic approaches provide another useful, some- 
what less accurate formula. The probability that a given 
gene is mis-regulated in a given tumor sample is approx- 
imately given by g = M/N. The probability that exactly 
k genes will be mis-regulated in all E experiments can be 
estimated by the following formula, which is essentially a 
specialized application of the binomial distribution 

P(E,k) ^yq'fil-q'Y-'. (6) 

This equation requires that K <^M <^N. 
Table 1 compares the P(E, k ^ K) values as functions 

of the number of the samples (E) derived by the recursive 
formula (1), using (4), and the approximative equations (5) 
and (6) for several k values. We have used a ratio of 
MjN = 0.1, which is often observed in cancer associated 
gene expression matrices. 

2.2   Ternary analysis of consistently mis-regulated 
genes by combinatorics 

A preliminary analysis (data not shown) indicated that 
about 50% of all inis-regulated genes show inconsistency 
in their direction of mis-regulation. These genes show 
up-regulation in some samples and down-regulation 
in others within the same tumor type. Therefore, we 
considered handling up- and down-regulation separately, 
in order to calculate the probability P(E,k,i) that A- 
genes are consistently mis-regulated by chance with / 
0" < k) genes being consistently mis-regulated in the 
same direction (i.e. either up (1) or down (-1)). It is 
self-evident that there will be fewer cases here than when 
asking the question how many times exclusively non-O's 
(without exfuiiining tlie direction of mis-regulation) will 
be found for exactly k genes. Thus PiE, k, i) < P(£, k). 

In most cases, all we want to know is whether our 
finding is unlikely to be a chance event. If the calculations 
suggest tliat it is unlikely to have k mis-regulated genes 
by chance, then it is even more unlikely that a certain 
number, i, of those genes will be mis-regulated the same 
direction. Therefore we are justified to avoid the arduous 
combinatoiics calculations on ternary data. 

3   RESULTS 
3.1 Estimating the required sample number in 

order to validate statisticaUy significant 
consistent mis-regulation 

One of the key issues in the experimental design of 
massively parallel gene expression measurements is 
determining the required sample number that will ensure 
the appropriate power of statistical analysis: given a 
certain sample quality, which includes the number of 
measurable genes and average gene expression diversity, 
how many samples do we need to be sure that the con- 
sistent mis-regulation of k genes is not due to chance 
at a given confidence level? Equations (l)-(6) can be 
exploited in order to answer this quesdon. Currently, 
a typical cancer associated gene expression measure- 
ment contains about 5000 genes, of which 10-15% 
are mis-regulated in every sample. Witli these numbers 
about £ = 8 samples are sufficient to establish that any 
(i.e. A' > 1) consistent mis-regulation observed is not 
due to accident. These calculations can be easily updated 
as experimental data change. However, we would like 
to point out that for the whole human transcriptome, 
witli about A^ = 50000-100000 different splice variants 
of genes, with the average 10-15% cancer associated 
gene expression diversity, about E = 10 samples will 
be sufficient to establish that consistent mis-regulation 
of a gene is not due to chance with a confidence level of 
99.9%. 

The breast cancer associated data set published by 
Perou et al. (1999) contains cDNA raicroaixay based 
reladve expression measurements of about 5584 genes for 
a number of both normal and neoplastic breast epithelial 
samples. A total of 43 genes are consistently mis-regulated 
in this data set. Applying (1) we found that the probability 
that at least 43 genes will be consistendy mis-regulated 
by chance is on the order of 10""^'^ and the probability 
that at least one gene will be mis-regulated is on the order 
of 10"'*. Thus, it is very unlikely that the consistent mis- 
regulation of genes observed in these tumor samples is due 
to chance. 

3.2 Range of validity for the equations 
Equations (l)-(6) were derived assuming that mis- 
regulated genes are randomly and independently selected, 
and they therefore loose their validity if this assumption 
is incorrect. In fact, biological systems display at least 
two major restrictions on the selection of mis-regulated 
genes. First, not every gene can be mis-regulated. Gene 
expression matrices typically contain at least 5-20% 
genes that ai'e unchanged in any of the neoplastic samples, 
even if those matrices were derived Irom a large number 
of cancer samples, such as the more than 70 lymphoma 
cases published by Alizadeh ei al. (2000). (It is obviously 
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Table 1. Values of logio(P(£, k > AT)), i.e. the logarithm of the probabihty of having at least k consistenUy mis-regulated genes in E samples, computed 
using (4)-(6). The number of genes (N) was equal to 1000 and the number of mis-regulated genes (Af) in each sample, was equal to 100. Under these 
conditions, when £ > 4, all three equations give the same results to within an error of less than 1% 

K = l K = i 

E Equation (4) Equation (5) Equation (6) E Equation (4) Equation (5) Equation (6) 

3 -0.43408 -0.19564 0.00000 3 _ -2.10975 -0.81497 

4 -1.04339 -1.02077 -1.00000 4 -3.82276 -3.85574 -3.82681 

5 -2.00434 -2.00218 -2.00000 5 -6.78379 -6.84134 -6.83863 

6 -3.00043 -3.00218 -3.00000 6 -9.77989 -9.85078 -9.85047 

7 -400004 -4.00436 -400000 7 -12.7795 -12.8623 -12.8623 

8 -5.00000 -5.00000 -5.00000 8 -15.7795 -15.8742 -15.8742 

9 -6.00000 -6.00000 -6.00000 9 -18.7795 -18.8861 -18.8861 

10 -7.00000 -7.00000 -7.00000 10 -21.7795 -21.8979 -21.8979 

more likely that a higher percentage of changeable genes 
will display mis-regulation when a large number of 
sair^jles is examined) Second, mis-regulated genes are 
not independently selected as reflected in the high level of 
pair-wise mutual infomiation content displayed in cancer 
associated gene expression matrices (Klus et al, 2001; 
Butte and Kohane, 2000). Ignoring these restiictions can 
lead to an underestimation of the chance appearance of 
consistently mis-regulated genes, therefore attaching an 
erroneously high significance to these observations. 

In the following section we will examine the effect of 
the first of the restrictions listed above on calculating tlie 
statistical significance of consistently mis-regulated genes. 

3.3   Determining the pool of 'mis-regulatable' 
genes 

The fact that some genes remain unchanged in all of the 
tumor samples will obviously lead to a smaller N in the 
equations above. Therefore, for more accurate calculations 
it should be established whether the unchanged genes are 
never mis-regulated in cancer or whether they can be mis- 
regulated but the sample number of the gene expression 
matrix was too small to provide a chance for all possible 
changes to be displayed. The number of mis-regulatable 
(or changeable) genes can be estimated using conditional 
probabilities as follows: let us designate the number of 
changeable genes as A^eff, (the total number of measured 
genes is N). Assuming random and independent selection 
of the mis-regulated genes, the probability that a gene will 
renwin unchanged across all E cell lines can be v^Titten 

P(U) = 1 X P(IJC) + PiVQCH) X P(CH),      (7) 

where P(UC) is the probability that the gene is unchange- 
able, P(UC|CH) the probability tliat the gene does not 
change in any cell line given that it is changeable, and 
P(CH) the probability that tlie gene is changeable. Based 
on frequencies, these probabilities can be estimated, in the 

same order, as (A^ - A'efei/A^- nf=i(l ~ ^i/'^^fd, and 

N(is/N. Inserting these values into (7), the expected num- 
ber of unchanged genes is obtained as 

Nv- N - Neti 1 n 
:=1 iVeff 

(8) 

We have applied (8) to several published large-scale 
gene expression matrices. Figure 1 is a representative 
sample of our results based on breast cancer associated 
gene expression matrices published by Perou et al. (1999). 
For our analysis we have used only gene expression 
measurements derived from either breast cancer cell lines 
or primary breast tumors, 16 samples altogether. In this 
case, the best fit of (8) to the experimental data is 
obtained if the number of mis-regulatable genes is set to 
ftfound 5100. 

Equations (l)-(4) suggest that the probability of having 
at least k consistently mis-regulated genes in a given data 
set will depend on the effective number of changeable 
genes. In order to estimate this effect we have calculated 
the probability for several k values as a function of the 
ratio of A^eff relative to N. The results, shown in Figure 2, 
indicate that, if A^ is used instead of the actual A^eff, 
P{E,k > Jf) can be underestimated by up to several 
orders of magnitude in the case of larger K values. The 
typical range of A^'ea- is between 0.8Af and 0.95N, with for 
example 0.94N for the data set derived from Perou et al. 
(1999). With these values of Neir, underestimation occurs 
at very low P{E, k '^ K) values, creating little practical 
consequences. Nevertheless, the correct Ne,ff can be easily 
estimated by the approach demonstrated in Figure 1. It 
is evident from (8) that the number of unchanged genes 
is asymptotically approaching the value of {N - A'e.ff) as 
E increases. We can readily determine the value of E 
at which tlie difference between the expected number of 
unchanged genes and (N - A^eff) drops below a certain 
threshold value. Using (8), and replacing the individual M,- 
values with an average M value a simple formula for this 
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Fig. 1. The number of unchanged genes as a function of the number 
of samples for the Perou et al. (1999) data set. The curves show the 
the expected number of unchanged genes based on (8), assuming 
that all genes can be changed (lower curve, + symbols) or that only 
5100 genes are changeable (X symbols). The dots with error bars 
show the results from the experimental data. The error bars stem 
from the fact that, for the data point corresponding to e samples, 
there are (^) ways of selecting the samples. 

calculation is obtained 

N,ii{\ M_\E 
TG 

N - N,n 
^e^. 

Solving for E, one obtains 

E 
ioe(^(7^-i)) 

log(l M \ 
Nat' 

(9) 

(10) 

Knowing tliat Neff is of order O.SA' to 0.95N, the required 
number of samples can be estimated. For example, for the 
Perou et al. data set discussed above, with N — 5584 and 
Mav = 1902 the required number of samples is between 
E = 11 and E = 17 for e = 0.01. However, with a lower 
ratio of M/N, the required number of experiments can be 
signilicaiitly higher. 

4   DISCUSSION 
Tlie analysis of massively parallel gene expression 
measurements in cancer will be performed at different 
levels of complexity. In order "to pick the low hanging 
fruit' first, it seems feasible to perform a simple form 
of 'guilt by association analysis' and identify consis- 
tently mis-regulated genes in neoplastic samples. The 
significant diversity of cancer associated gene expression 
patterns, however, necessitates the use of appropriate 
statistical analysis. Successful statistical an^ysis will 
require understanding the structure of the data, creating 
the coitesponding null hypothesis and performing the 

Fig. 2. logio(/'(£', k^ K)) asa. function of A^eff for M = 100, 
£ = 5, and K = 1 (top curve), 5, and 10 (bottom curve). 

appropriate calculations. It is often true, as in the case 
of tills paper, that accepting a simpler data structure 
(e.g. random and independent selection of mis-regulated 
genes) yields significantly easier calculations. It is one 
of the central issues of bioinformatics to find tlie correct 
balance between the complexity of data structure and the 
corresponding difficulties of calculations. Finding this 
balance will provide biologists with the simplest statistical 
calculations that provide satisfactory results. We have 
followed these guidelines in this paper while addressing 
the issue of consistently mis-regulated genes. Assuming 
that mis-regulated genes in cancer ai'e randomly and inde- 
pendently selected leads to straightforward combinatorial 
calculations and easy to use approximative formulae for 
the case of K <^ M 4C N, which holds for all cancer 
associated gene expression matrices published so fai'. 

These calculations yielded the interesting and practical 
result, that about 10 sufficiently diverse tumor samples 
are enough to identify consistently mis-regulated genes 
in a statistically significant manner, even if the complete 
human transcriptome is probed. We are well aware of the 
fact that canca- associated gene expression patterns are 
produced by the rearrangement of complex genetic net- 
works. Therefore, the assumption of random and indepen- 
dent selection of mis-regulated genes is oversimpMfled. 
There are two obvious restrictions on the data structure of 
these matrices. First, not every gene can be mis-regulated. 
Second, genes are mis-regulated in a coordinated fash- 
ion (see e.g. Wahde and Szallasi, 2001). Here we have 
examined the effect of the first restriction on statistical 
analysis. Since the pool of mis-regulatable genes can be 
well estimated with a relatively limited number of sam- 
ples (less than 20), statistical calculations can be readily 
adjusted accordingly. This is probably worth doing even if 
we found a relatively limited effect of mis-estimating the 
number of mis-regulatable genes. 
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We have recently addressed the effect of coordinated 
mis-regulation for the statistical analysis of A" = 2 
sepai-ators. In order to overcome complicated calculations 
we have introduced a simulative process, called generative 
models, to estimate the chance appearance of these higher 
order separators (Wahde and Szallasi, 2001). Strikingly, 
we found that the results of statistical analysis can be 
off by many orders of magnitude when the coordinated 
mis-regulation of genes was ignored. We are currently 
modifying the generative model in order to accommodate 
the analysis of K = I separators i.e. consistently mis- 
regulated genes as well. 
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APPENDIX 
A brief derivation of (2) and (3): consider first the case 
of £ = 2 samples with N genes each. In the first sam- 
ple. MI genes are mis-regulated. Assuming random and 
independetit selection, the probability of having exactly k 
genes consistently mis-regulated (hereafter denoted CM), 
i.e. mis-regulated in both samples, can easily be computed 
by noting that, for the second sample, there are (''^') ways 
of selecting the k genes that were mis-regulated in the first 
sample (to obtain k CM genes), and the remaining M2 - k 
mis-regulated genes can then be selected in {^""5^-) ways. 

The total numbei- of ways of selecting Afi genes out of 
N is (^^„), and thus (3) is derived. Consider now tlie case 
of 3 samples and assume, to begin with, that j genes were 
CM in the first two samples. In order to obtain exactly 
k CM genes in the three samples, k of the mis-regulated 
genes in sample three must be selected from the ; genes 
that were CM in the first two samples. This can be done 
in (^) ways. The remaining M3 - k mis-regulated genes 
in the third sample must be selected from the other N - j 
genes, which can be done in (j^~J^) ways. 

The selection of M? genes among N can be done in 
{^J ways, and so, the probability of having A- CM genes, 
given j CM genes after two samples would be 

Pik\j) = 
\kl\M3- 

(A.1) 

Now, the number of CM genes in the two first samples 
can range from 0 to min(M], Mi). If it is smaller than 
A: then, clearly, the probability of obtaining k CM genes 
after three samples is zero. Thus, the probability of having 
k CM genes after three samples will consist of a sum 
raiging from j = k to ,/ =min(Mi, M2), in which the 
individual terms will consist of the product of. pik\j) (A. 1) 
andp(2,j)(3): 

mm(Mi,A/2) 

p(3,A;)=     Y.  ' P(k\J)P(2J).        (A.2) 
j=k. 

Note, that this is identical to (2) for JE = 3. It is easy to 
generalize this equation to any number E of samples, and 
so (2) follows, 
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